
容器里面乾坤大:	采用容器部署应用的
性能考虑

Memory-related	Performance	Pi3alls	and	
Solu7ons	for	Linux	Cgroup’s	based	Deployments

1

Outline	

q  Introduc7on	
q Memory	related	performance	pi3alls	
q Strategies	
q Discussions	
q Conclusion	

2

Self	Introduc7on	

q  LinkedIn	or	MicrosoC?	
§  N/A	

q  Performance	engineering	

§  Applica7ons	(HTTP,	P2P,	Hadoop,	streaming,	etc.)	
§  Java	(JVM,	GC,	etc.)	
§  VM/Container(cgroups,	etc.)	
§  Linux	(Memory	management,	file	system,	cpu	scheduling,	etc.)	
§  Networking	(Wireless/mobile,	TCP/IP,	etc.)	
§  Storage	(HDD,	SSD,	etc.)	

q  Other	interest	
§  Chinese	culture	(History,	Poems,	etc.)	

3

Problem	context	
q  Container	

§  Linux	cgroups,	Docker,	CoreOS	

q  New	challenges	in	APM	
§  Performance	metrics	monitoring	
§  Deployment	concerns	
§  Debugging/aler7ng	

q  Knowledge	sharing,	discussions	
§  Cgroups,	performance,	memory	

q Blog	
§  hYps://engineering.linkedin.com/blog/2016/08/don_t-let-
linux-control-groups-uncontrolled	

4

Technical	backgrounds	(Cgroups)	

5

User	memory	
(Anonymous)	
Page	cache	

usage	
Mem	not	
allocated	

Swappiness=0	

User	memory	
(Anonymous)	
Page	cache	

usage	

Swappiness=1	

Regular	cgroup	 Root	cgroup	

Swap	space	

Overcommit_memory	policy	

Memory	limit	
(bounded)	 (unbounded)	

Outline	

q  Introduc7on	
q Memory	related	performance	pi3alls	
q Strategies	
q Discussions	
q Conclusion	

6

Memory	related	performance	pi3alls	

q Memory	is	not	allocated	
q Page	cache	is	part	of	memory	limit,	can	be	
evicted	by	anonymous	memory	request	

q OS	can	reclaim	system-wide	page	cache	
q OS	can	swap	system-wide	anonymous	memory	
q Virtual	memory	space	is	not	limited	

7

Experiment	setup	

q Hardware	
§  Intel	Xeon	E5-2680,	dual	sockets	(12	physical	cores)	
§  64	GB	RAM	(NUMA	setup)	

q  OS	
§  RHEL	(RedHat	Linux	Enterprise)	7,	3.10.0-327.10.1	
§  16GB	swap,	swappiness=1	for	root,	0	for	regular	cgroups		

q Workload	
§  Java	applica7on	

q Other	performance	metrics	
§  Cgroup	stat	(swap,	rss,	page	cache),	“free”	

8

Pi3all	1:	Memory	is	not	allocated	
(as	with	VM)	

q Memory	limit	of	a	cgroup	
§  Only	upper	bound	
§  “Use	as	you	go”	model	

q Memory	request	from	cgroups	
§  Free	memory	
§  OS	reclaiming	(page	cache	or	swapping)	

q  Performance	when	write-backing	dirty	caches	
§  Taking	20	seconds	to	obtain	16GB	of	memory	
§  Varies	depending	on	the	dirty	cache	size	and	IO	capacity	

9

Pi3all	2:	Page	cache	is	part	of	
memory	limit	

q Memory	limit	of	a	cgroup	
§  Anonymous	memory	(user	space)	
§  Page	cache	used	(Kernel	space)	
§  Need	to	es7mate	footprints	of	both	types	

q  Anonymous	memory	requests	evic7ng	page	cache	
§  Insufficient	page	cache	causes	under-performing	applica7on	
§  Write-back	IO	may	affect	other	cgroups		

10

Pi3all	2:	Page	cache	is	part	of	memory	limit	
Experiment	results	(cgroup’s	rss)	

11

Setup:			
• A	regular	cgroup	has	20	GB	limit;	used	13	GB	page	cache	
Ac7on:		
• The	regular	cgroup	requests	16	GB	anonymous	memory	
Results:		
• The	cgroup’s	rss	increases	by	16	GB	(0GB	à	16	GB)	
• The	cgroup’s	page	cache	drops	by	8	GB	(13	GB	à	5	GB)	

Pi3all	2:	Page	cache	is	part	of	memory	limit	
Experiment	results	(cgroup’s	page	cache)	

12

Setup:			
• A	regular	cgroup	has	20	GB	limit;	used	13	GB	page	cache	
Ac7on:		
• The	regular	cgroup	requests	16	GB	anonymous	memory	
Results:		
• The	cgroup’s	rss	increases	by	16	GB	(0	GB	à	16	GB)	
• The	cgroup’s	page	cache	drops	by	8	GB	(13	GB	à	5	GB)	

Pi3all	3:	OS	can	reclaim	system-
wide	page	cache	

q Page	cache	used	charged	to	cgroups	
§  Anonymous	memory	+	page	cache	<	memory	limit	

q  OS	maintains	the	en7re	page	cache	
§  Kernel	space	
§  Replacement	algorithm	applies	to	all	pages	
§  Does	not	respect	the	owners	

13

Pi3all	3:	Experiment	results	
(regular	cgroup’s	page	cache)	

14

Setup:			
• A	regular	cgroup	(cg1)	has	20GB	limit;	used	4.8GB	page	cache	
Ac7on:		
• Another	regular	cgroup	reads	a	file,	reques7ng	page	cache	
Results:		
• Cg1	page	cache	drops	by	2.6	GB	(4.8	GB	à	2.2	GB)	
• Root	cgroup	page	cache	drops	by	5.5	GB	(12	GB	à	6.5	GB)	

Pi3all	3:	Experiment	results		
(root	cgroup’s	page	cache)	

15

Setup:			
• A	regular	cgroup	(cg1)	has	20GB	limit;	used	4.8GB	page	cache	
Ac7on:		
• The	root	cgroup	reads	a	file,	reques7ng	page	cache	
Results:		
• Cg1	page	cache	drops	by	2.6	GB	(4.8	GB	à	2.2	GB)	
• Root	cgroup	page	cache	drops	by	5.5	GB	(12	GB	à	6.5	GB)	

Pi3all	4:	OS	can	swap	system-wide	
anonymous	memory	

q Anonymous	memory	usage	of	a	cgroup	
§  Anonymous	memory	+	page	cache	<	memory	limit	
§  Swappiness=0	can	protect	memory	from	inside	requests	

q  OS	controls	the	swapping	mechanism	
§  All	cgroups	share	the	same	swap	space	
§  OS	can	swap	any	anonymous	memory	pages	
§  Does	not	respect	the	owners	

16

Pi3all	4:	Experiment	results		
(Cg1’s	swap)		

17

Setup:			
• Two	regular	cgroups	(cg1,	cg2)	each	has	30	GB	limit	
• Root	cgroup	has	used	10	GB	anonymous	memory	
• Cg1	used	28	GB	anonymous	memory	
Ac7on:		
• Cg2	starts	reques7ng	28GB	anonymous	memory	
Results:		
• Cg1	swap	size	increases	by	3.8	GB	(0	GB	à	3.8	GB)	(rss	drops)	
• Cg2	swap	size	increases	by	1.2	GB	(0	GB	à	1.2	GB)	(rss	drops)	
• Root	cgroup	swap	size	increases	by	6	GB	(0	GB	à	6	GB)	

Pi3all	4:	Experiment	results		
(Cg1’s	rss)		

18

Setup:			
• Two	regular	cgroups	(cg1,	cg2)	each	has	30	GB	limit	
• Root	cgroup	has	used	10	GB	anonymous	memory	
• Cg1	used	28	GB	anonymous	memory	
Ac7on:		
• Cg2	starts	reques7ng	28GB	anonymous	memory	
Results:		
• Cg1	swap	size	increases	by	3.8	GB	(0	GB	à	3.8	GB)	(rss	drops)	
• Cg2	swap	size	increases	by	1.2	GB	(0	GB	à	1.2	GB)	(rss	drops)	
• Root	cgroup	swap	size	increases	by	6	GB	(0	GB	à	6	GB)	

Pi3all	4:	Experiment	results		
(Cg2’s	swap)		

19

Setup:			
• Two	regular	cgroups	(cg1,	cg2)	each	has	30	GB	limit	
• Root	cgroup	has	used	10	GB	anonymous	memory	
• Cg1	used	28	GB	anonymous	memory	
Ac7on:		
• Cg2	starts	reques7ng	28GB	anonymous	memory	
Results:		
• Cg1	swap	size	increases	by	3.8	GB	(0	GB	à	3.8	GB)	(rss	drops)	
• Cg2	swap	size	increases	by	1.2	GB	(0	GB	à	1.2	GB)	(rss	drops)	
• Root	cgroup	swap	size	increases	by	6	GB	(0	GB	à	6	GB)	

Pi3all	4:	Experiment	results		
(Cg2’s	rss)		

20

Setup:			
• Two	regular	cgroups	(cg1,	cg2)	each	has	30	GB	limit	
• Root	cgroup	has	used	10	GB	anonymous	memory	
• Cg1	used	28	GB	anonymous	memory	
Ac7on:		
• Cg2	starts	reques7ng	28GB	anonymous	memory	
Results:		
• Cg1	swap	size	increases	by	3.8	GB	(0	GB	à	3.8	GB)	(rss	drops)	
• Cg2	swap	size	increases	by	1.2	GB	(0	GB	à	1.2	GB)	(rss	drops)	
• Root	cgroup	swap	size	increases	by	6	GB	(0	GB	à	6	GB)	

Pi3all	4:	Experiment	results		
(root	cgroup’s	swap)		

21

Setup:			
• Two	regular	cgroups	(cg1,	cg2)	each	has	30	GB	limit	
• Root	cgroup	has	used	10	GB	anonymous	memory	
• Cg1	used	28	GB	anonymous	memory	
Ac7on:		
• Cg2	starts	reques7ng	28GB	anonymous	memory	
Results:		
• Cg1	swap	size	increases	by	3.8	GB	(0	GB	à	3.8	GB)	(rss	drops)	
• Cg2	swap	size	increases	by	1.2	GB	(0	GB	à	1.2	GB)	(rss	drops)	
• Root	cgroup	swap	size	increases	by	6	GB	(0	GB	à	6	GB)	

Pi3all	5:	Virtual	memory	is	not	isolated	
(RSS	vs.	Virtual	Memory)	

q RSS:	Resident	set	size		
q VM:	Process	memory	map	(mmap,	library,	etc.)	

22

Pi3all	5:	Virtual	memory	is	not	limited	

q VM	space	is	limited	with	disabled	overcommit	
§  (Swap	space	size	+	RAM	*	overcommit_ra7o)	
§  E.g.,	RAM=64GB,	swap=32GB,	ra7o=50%.	VM=64GB	

q VM	limit	is	system-wide	
§  All	processes	aggregated	
§  Cgroups	do	not	limit	VM	

q  Impact	
§  Applica7ons	may	fail	to	start	or	suddenly	fails	

23

Pi3all	5:	Virtual	memory	is	not	limited	
(Virtual	memory	of	JVM	applica7ons)	

q JVM	heap		
§  Xms=1GB,	Xmx=5GB	

q RSS	
§  Heap	+	off-heap	(perm,	meta,	direct)	(4GB,	8GB)	

q Virtual	memory	
§  JVM	RSS	+	glibc	memory	pool	
§  Glibc	VM:	threads*64MB;	threads	capped	by	cores*8	

24

Pi3all	5:	Virtual	memory	is	not	limited	
(Virtual	memory	tests)	

q JDK-1_8_0_49/java	
§  Xms=Xmx=5G,	Xss=1M	
§  Glibc:	12	cores,	max	is	6144MB	

25

#	app	
threads	

JVM	
na7ve	
(MB)	

#	of	
JVM	
threads	

Glibc	mem	pool	
VM	(MB)	(min	of	
JVM	TH*64,	6144)	

Sum	of	JVM	
na7ve	and	glibc	
mem	pool	(MB)	

Actual	VM	size	
(MB,	pidstat)	

1	 6802	 24	 1536	 8338	 8396	

5	 6806	 28	 1792	 8598	 8662	

20	 6822	 43	 2752	 9574	 9660	

50	 6852	 73	 4672	 11524	 11637	

100	 6904	 123	 6144	 13048	 13282	

Pi3all	5:	Virtual	memory	is	not	limited	
Overcommit	sevng	

q Overcommit	disabled	
§  Vm.overcommit_memory=2	
§  VM	size	limited	by	swap	size	and	overcommit	ra7o	

q JVM	applica7ons	in	cgroups	
§  64GB	total	VM	(RAM=64GB,	swap=32GB,	ra7o=50)		
§  Each	JVM	12GB	VM		
§  Max	5	cgroups	(Not	considering	other	processes)	

q Applica7ons	may	request	more	VM	
§  Failure	

26

Outline	

q  Introduc7on	
q Memory	related	performance	pi3alls	
q Strategies	
q Discussions	
q Conclusion	

27

Strategies	

q Properly	sizing	memory	footprint	of	apps	
q Pre-touching	cgroup	memory	
q Tightly	controlling	root	cgroups	
q Limi7ng	VM	usage	of	cgroups	

28

Properly	sizing	mem	footprint	of	apps	

q Cgroup	memory	limit	
§  Based	on	app	memory	footprint	
§  Both	anonymous	memory	and	page	cache	

q Anonymous	memory	footprint	
§  Rela7vely	easy	

q Page	cache	footprint	
§  Not	possible	on	baremetal	(non-cgroup	env)	
§  No	Linux	metrics	
§  Further	complexi7es	(startup,	prefetching,	logging)	

29

Sizing	memory	footprint	on	cgroups	

q Metrics	
§  Memory.stat	(many	metrics	of	current	usage)	
§  Memory.failcnt	

q Anonymous	memory	–	rss	
§  Accurate	
§  Current	value	is	the	needed	value			

q Page	cache	–	ac7ve_file	
§  Approximate		
§  Current	value	may	be	less	than	needed	(spikes)	
§  Give	a	buffer	30

Pre-touching	cgroup	memory	

q Cgroups	does	not	allocate	memory	
q Java	heap	

§  Xms=Xmx	
§  -XX:+AlwaysPreTouch	

q Protec7ng	the	memory	
§  Swappiness=0	

31

Tightly	controlling	root	cgroup	

q Root	cgroup	is	unbounded	
§  Regular	cgroup	is	bounded	
§  Root	cgroup	more	likely	starve	other	cgroups	

q Scenarios	
§  Sshd,	crond,	CFEngine,	etc.	

q Moving		out	as	many	processes	as	possible	
§  Special	cgroups	with	memory	limit	

32

Limi7ng	VM	usage	of	cgroups	

q VM	is	a	precious	resource	
§  Just	like	other	types	(memory,	cpu,	etc.)	

q Overcommit	disabled	
§  Enough	swap	space	
§  Limi7ng	VM	usage	of	each	cgroup	

q Overcommit	enabled		
§  Processes	in	cgroups	can	request	infinite	VM	
§  When	RSS	reaching	memory	limit	

•  OOM:		swappiness	=	0		
•  Swapping:	swappiness	>	0	

33

Discussions	

q Design	ra7onal	of	cgroups	vs	virtual	machine	
q Taming	the	resource	usage	of	system	processes	
q Extreme	scenarios	are	worth	to	consider	
q Monitoring,	aler7ng,	enforcing,	debugging	

34

Conclusion	

q Cgroups	based	deployments	are	gevng	popular	
§  Cgroups,	Linux	containers,	Docker,	CoreOS	

q Performance	pi3alls	exist	in	certain	scenarios	
§  Focusing	on	memory	resource	

q Various	types	of	memory-pressure	problems	
§  Anonymous	memory,	page	cache,	virtual	memory	

q Strategies	to	mi7gate	these	problems	

35

Q/A	

q Thanks!	
q LinkedIn:	hYps://www.linkedin.com/in/zhenyun	
q Email:	zhenyun@gmail.com	
	

36

