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Memory-related Performance Pitfalls and
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Self Introduction

d LinkedIn or Microsoft?
= N/A
d Performance engineering

= Applications (HTTP, P2P, Hadoop, streaming, etc.)
= Java (JVM, GC, etc.)

= VM/Container(cgroups, etc.)
= Linux (Memory management, file system, cpu scheduling, etc.)
= Networking (Wireless/mobile, TCP/IP, etc.)
= Storage (HDD, SSD, etc.)
d Other interest

=  Chinese culture (History, Poems, etc.)
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Problem context

J Container
" Linux cgroups, Docker, CoreQOS

J New challenges in APM
= Performance metrics monitoring
= Deployment concerns
= Debugging/alerting

J Knowledge sharing, discussions
= Cgroups, performance, memory

1 Blog

= https://engineering.linkedin.com/blog/2016/08/don_t-let-

linux-control-groups-uncontrolled
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Technical backgrounds (Cgroups)
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 Memory related performance pitfalls
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Memory related performance pitfalls

JdMemory is not allocated

dPage cache is part of memory limit, can be
evicted by anonymous memory request

1 OS can reclaim system-wide page cache

JOS can swap system-wide anonymous memory

dVirtual memory space is not limited
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Experiment setup

] Hardware

" Intel Xeon E5-2680, dual sockets (12 physical cores)
" 64 GB RAM (NUMA setup)

d OS
= RHEL (RedHat Linux Enterprise) 7, 3.10.0-327.10.1

= 16GB swap, swappiness=1 for root, O for regular cgroups

] Workload

= Java application

JOther performance metrics
= Cgroup stat (swap, rss, page cache), “free”
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Pitfall 1: Memory is not allocated
(as with VM)

1 Memory limit of a cgroup
=  Only upper bound
= “Use as you go” model

d Memory request from cgroups
= Free memory
= OSreclaiming (page cache or swapping)
d Performance when write-backing dirty caches

= Taking 20 seconds to obtain 16GB of memory
= Varies depending on the dirty cache size and IO capacity
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Pitfall 2: Page cache is part of
memory limit

d Memory limit of a cgroup

=  Anonymous memory (user space)
= Page cache used (Kernel space)
= Need to estimate footprints of both types

J Anonymous memory requests evicting page cache
»" |nsufficient page cache causes under-performing application
"  Write-back IO may affect other cgroups
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Pitfall 2: Page cache is part of memory limit

@,

Experiment results (cgroup’s rss)

Setup:

*A regular cgroup has 20 GB limit; used 13 GB page cache
Action:

*The regular cgroup requests 16 GB anonymous memory
Results:

*The cgroup’s rss increases by 16 GB (0GB - 16 GB)

*The cgroup’s page cache drops by 8 GB (13 GB - 5 GB)
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Pitfall 2: Page cache is part of memory limit
Experiment results (cgroup’s page cache)

O

Setup:

*A regular cgroup has 20 GB limit; used 13 GB page cache
Action:

*The regular cgroup requests 16 GB anonymous memory
Results:

*The cgroup’s rss increases by 16 GB (0 GB - 16 GB)
*The cgroup’s page cache drops by 8 GB (13 GB = 5 GB)
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Pitfall 3: OS can reclaim system-
wide page cache

] Page cache used charged to cgroups
=  Anonymous memory + page cache < memory limit
(d OS maintains the entire page cache

= Kernel space
= Replacement algorithm applies to all pages
= Does not respect the owners
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Pitfall 3: Experiment results
(regular cgroup’s page cache)

@

Setup:

*A regular cgroup (cgl) has 20GB limit; used 4.8GB page cache
Action:

*Another regular cgroup reads a file, requesting page cache
Results:

*Cg1l page cache drops by 2.6 GB (4.8 GB - 2.2 GB)

*Root cgroup page cache drops by 5.5 GB (12 GB - 6.5 GB)

1 APML



Pitfall 3: Experiment results
(root cgroup’s page cache)

Setup:

*A regular cgroup (cgl) has 20GB limit; used 4.8GB page cache
Action:

*The root cgroup reads a file, requesting page cache

Results:

*Cg1 page cache drops by 2.6 GB (4.8 GB > 2.2 GB)

*Root cgroup page cache drops by 5.5 GB (12 GB - 6.5 GB)
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Pitfall 4: OS can swap system-wide
anonymous memory

J Anonymous memory usage of a cgroup
=  Anonymous memory + page cache < memory limit

= Swappiness=0 can protect memory from inside requests

d OS controls the swapping mechanism
= All cgroups share the same swap space
= (S can swap any anonymous memory pages
= Does not respect the owners
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Pitfall 4: Experiment results
(Cgl’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)

APML
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Pitfall 4: Experiment results
(Cgl’s rss)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cg1 swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)
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Pitfall 4: Experiment results
(Cg2’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)
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Pitfall 4: Experiment results
(Cg2’s rss)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)
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Pitfall 4: Experiment results
(root cgroup’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cg1 swap size increases by 3.8 GB (0 GB = 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB = 6 GB)

O
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Pitfall 5: Virtual memory is not isolated
(RSS vs. Virtual Memory)

] RSS: Resident set size

. VM: Process memory map (mmap, library, etc.)

O
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Pitfall 5: Virtual memory is not limited

J VM space is limited with disabled overcommit

= (Swap space size + RAM * overcommit_ratio)

= E.g., RAM=64GB, swap=32GB, ratio=50%. VM=64GB
d VM limit is system-wide

= All processes aggregated

= Cgroups do not limit VM

J Impact

= Applications may fail to start or suddenly fails
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Pitfall 5: Virtual memory is not limited
(Virtual memory of JVM applications)

d JVM heap
= Xms=1GB, Xmx=5GB
J RSS
= Heap + off-heap (perm, meta, direct) (4GB, 8GB)

d Virtual memory

= JVM RSS + glibc memory pool
= Glibc VM: threads*64MB; threads capped by cores*8
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Pitfall 5: Virtual memory is not limited
(Virtual memory tests)
J JDK-1_8 0 49/java
= Xms=Xmx=5G@G, Xss=1M
= QGlibc: 12 cores, max is 6144MB

# app JVM # of Glibc mem pool Sum of JVM Actual VM size
threads native JVM VM (MB) (min of native and glibc (MB, pidstat)
(MB) threads JVM TH*64, 6144) mem pool (MB)

6806 1792 8598 8662
a5 467 11524 11637
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Pitfall 5: Virtual memory is not limited
Overcommit setting

J Overcommit disabled
" Vm.overcommit_memory=2
= VM size limited by swap size and overcommit ratio

J JVM applications in cgroups
" 64GB total VM (RAM=64GB, swap=32GB, ratio=50)
" EachJVM 12GB VM
= Max 5 cgroups (Not considering other processes)

1 Applications may request more VM

= Failure
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Strategies

d Properly sizing memory footprint of apps
J Pre-touching cgroup memory

[ Tightly controlling root cgroups
 Limiting VM usage of cgroups
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Properly sizing mem footprint of apps

J Cgroup memory limit
= Based on app memory footprint
" Both anonymous memory and page cache

J Anonymous memory footprint

= Relatively easy

1 Page cache footprint
= Not possible on baremetal (non-cgroup env)
= No Linux metrics

* Further complexities (startup, prefetching, logging)
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Sizing memory footprint on cgroups

J Metrics

= Memory.stat (many metrics of current usage)
= Memory.failcnt

(J Anonymous memory — rss
=  Accurate
= Current value is the needed value

(] Page cache — active_file
= Approximate

= Current value may be less than needed (spikes)
30 = Give a buffer APMLC
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Pre-touching cgroup memory

 Cgroups does not allocate memory

 Java heap

= Xms=Xmx

= _XX:+AlwaysPreTouch
[ Protecting the memory
= Swappiness=0
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Tightly controlling root cgroup

J Root cgroup is unbounded
= Regular cgroup is bounded
" Root cgroup more likely starve other cgroups

. Scenarios
= Sshd, crond, CFEngine, etc.

1 Moving out as many processes as possible

= Special cgroups with memory limit

APML
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Limiting VM usage of cgroups

. VM is a precious resource
= Just like other types (memory, cpu, etc.)

1 Overcommit disabled
" Enough swap space

" Limiting VM usage of each cgroup

J Overcommit enabled
" Processes in cgroups can request infinite VM

= When RSS reaching memory limit
* OOM: swappiness =0
* Swapping: swappiness >0
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Discussions

] Design rational of cgroups vs virtual machine

J Taming the resource usage of system processes
] Extreme scenarios are worth to consider

J Monitoring, alerting, enforcing, debugging
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Conclusion

1 Cgroups based deployments are getting popular
= Cgroups, Linux containers, Docker, CoreOS

[ Performance pitfalls exist in certain scenarios

= Focusing on memory resource

J Various types of memory-pressure problems

= Anonymous memory, page cache, virtual memory

] Strategies to mitigate these problems

APM
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Q/A

] Thanks!
 LinkedIn: https://www.linkedin.com/in/zhenyun

J Email: zhenyun@gmail.com
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