APMLIIM

I

WA B K: REAE
HEREH 1

== N Y

my/gnl

o)

Memory-related Performance Pitfalls and
Solutions for Linux Cgroup’s based Deployments

Eikiz

Outline

 Introduction

J Memory related performance pitfalls
. Strategies

J Discussions

J Conclusion

APMLII

Self Introduction

d LinkedIn or Microsoft?
= N/A
d Performance engineering

= Applications (HTTP, P2P, Hadoop, streaming, etc.)
= Java (JVM, GC, etc.)

= VM/Container(cgroups, etc.)
= Linux (Memory management, file system, cpu scheduling, etc.)
= Networking (Wireless/mobile, TCP/IP, etc.)
= Storage (HDD, SSD, etc.)
d Other interest

= Chinese culture (History, Poems, etc.)

APML

Problem context

J Container
" Linux cgroups, Docker, CoreQOS

J New challenges in APM
= Performance metrics monitoring
= Deployment concerns
= Debugging/alerting

J Knowledge sharing, discussions
= Cgroups, performance, memory

1 Blog

= https://engineering.linkedin.com/blog/2016/08/don_t-let-

linux-control-groups-uncontrolled

APML

Technical backgrounds (Cgroups)

//ﬁegular cgroup

| User memory
(Anonymous)
Page cache
usage

Mem not
allocated

PR—

\\

__Memory limit
(bounded)

/

\\\Qvappinesvo

(unboundég

~

Root cgroup

User memory
(Anonymous)
Page cache
usage

Swappiness=1

Overcommit_memory policy

Swap space

APML

Outline

 Memory related performance pitfalls

APML

Memory related performance pitfalls

JdMemory is not allocated

dPage cache is part of memory limit, can be
evicted by anonymous memory request

1 OS can reclaim system-wide page cache

JOS can swap system-wide anonymous memory

dVirtual memory space is not limited

APML

Experiment setup

] Hardware

" Intel Xeon E5-2680, dual sockets (12 physical cores)
" 64 GB RAM (NUMA setup)

d OS
= RHEL (RedHat Linux Enterprise) 7, 3.10.0-327.10.1

= 16GB swap, swappiness=1 for root, O for regular cgroups

] Workload

= Java application

JOther performance metrics
= Cgroup stat (swap, rss, page cache), “free”

APML

Pitfall 1: Memory is not allocated
(as with VM)

1 Memory limit of a cgroup
= Only upper bound
= “Use as you go” model

d Memory request from cgroups
= Free memory
= OSreclaiming (page cache or swapping)
d Performance when write-backing dirty caches

= Taking 20 seconds to obtain 16GB of memory
= Varies depending on the dirty cache size and IO capacity

APML

10

Pitfall 2: Page cache is part of
memory limit

d Memory limit of a cgroup

= Anonymous memory (user space)
= Page cache used (Kernel space)
= Need to estimate footprints of both types

J Anonymous memory requests evicting page cache
»" |nsufficient page cache causes under-performing application
" Write-back IO may affect other cgroups

APML

11

Pitfall 2: Page cache is part of memory limit

@,

Experiment results (cgroup’s rss)

Setup:

*A regular cgroup has 20 GB limit; used 13 GB page cache
Action:

*The regular cgroup requests 16 GB anonymous memory
Results:

*The cgroup’s rss increases by 16 GB (0GB - 16 GB)

*The cgroup’s page cache drops by 8 GB (13 GB - 5 GB)

APML

Pitfall 2: Page cache is part of memory limit
Experiment results (cgroup’s page cache)

O

Setup:

*A regular cgroup has 20 GB limit; used 13 GB page cache
Action:

*The regular cgroup requests 16 GB anonymous memory
Results:

*The cgroup’s rss increases by 16 GB (0 GB - 16 GB)
*The cgroup’s page cache drops by 8 GB (13 GB = 5 GB)

12 APML

Pitfall 3: OS can reclaim system-
wide page cache

] Page cache used charged to cgroups
= Anonymous memory + page cache < memory limit
(d OS maintains the entire page cache

= Kernel space
= Replacement algorithm applies to all pages
= Does not respect the owners

13 APML

Pitfall 3: Experiment results
(regular cgroup’s page cache)

@

Setup:

*A regular cgroup (cgl) has 20GB limit; used 4.8GB page cache
Action:

*Another regular cgroup reads a file, requesting page cache
Results:

*Cg1l page cache drops by 2.6 GB (4.8 GB - 2.2 GB)

*Root cgroup page cache drops by 5.5 GB (12 GB - 6.5 GB)

1 APML

Pitfall 3: Experiment results
(root cgroup’s page cache)

Setup:

*A regular cgroup (cgl) has 20GB limit; used 4.8GB page cache
Action:

*The root cgroup reads a file, requesting page cache

Results:

*Cg1 page cache drops by 2.6 GB (4.8 GB > 2.2 GB)

*Root cgroup page cache drops by 5.5 GB (12 GB - 6.5 GB)

15 APML

Pitfall 4: OS can swap system-wide
anonymous memory

J Anonymous memory usage of a cgroup
= Anonymous memory + page cache < memory limit

= Swappiness=0 can protect memory from inside requests

d OS controls the swapping mechanism
= All cgroups share the same swap space
= (S can swap any anonymous memory pages
= Does not respect the owners

16 APML

17

Pitfall 4: Experiment results
(Cgl’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)

APML

18

O

Pitfall 4: Experiment results
(Cgl’s rss)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cg1 swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)

APML

19

O

Pitfall 4: Experiment results
(Cg2’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)

APML

20

Pitfall 4: Experiment results
(Cg2’s rss)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cgl swap size increases by 3.8 GB (0 GB - 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB - 6 GB)

APML

Pitfall 4: Experiment results
(root cgroup’s swap)

Setup:

*Two regular cgroups (cgl, cg2) each has 30 GB limit

*Root cgroup has used 10 GB anonymous memory

*Cgl used 28 GB anonymous memory

Action:

*Cg2 starts requesting 28GB anonymous memory

Results:

*Cg1 swap size increases by 3.8 GB (0 GB = 3.8 GB) (rss drops)
*Cg2 swap size increases by 1.2 GB (0 GB = 1.2 GB) (rss drops)
*Root cgroup swap size increases by 6 GB (0 GB = 6 GB)

O

21 APML

22

Pitfall 5: Virtual memory is not isolated
(RSS vs. Virtual Memory)

] RSS: Resident set size

. VM: Process memory map (mmap, library, etc.)

O

APML

Pitfall 5: Virtual memory is not limited

J VM space is limited with disabled overcommit

= (Swap space size + RAM * overcommit_ratio)

= E.g., RAM=64GB, swap=32GB, ratio=50%. VM=64GB
d VM limit is system-wide

= All processes aggregated

= Cgroups do not limit VM

J Impact

= Applications may fail to start or suddenly fails

23 APML

Pitfall 5: Virtual memory is not limited
(Virtual memory of JVM applications)

d JVM heap
= Xms=1GB, Xmx=5GB
J RSS
= Heap + off-heap (perm, meta, direct) (4GB, 8GB)

d Virtual memory

= JVM RSS + glibc memory pool
= Glibc VM: threads*64MB; threads capped by cores*8

24 APML

Pitfall 5: Virtual memory is not limited
(Virtual memory tests)
J JDK-1_8 0 49/java
= Xms=Xmx=5G@G, Xss=1M
= QGlibc: 12 cores, max is 6144MB

app JVM # of Glibc mem pool Sum of JVM Actual VM size
threads native JVM VM (MB) (min of native and glibc (MB, pidstat)
(MB) threads JVM TH*64, 6144) mem pool (MB)

6806 1792 8598 8662
a5 467 11524 11637

25 APMLII

Pitfall 5: Virtual memory is not limited
Overcommit setting

J Overcommit disabled
" Vm.overcommit_memory=2
= VM size limited by swap size and overcommit ratio

J JVM applications in cgroups
" 64GB total VM (RAM=64GB, swap=32GB, ratio=50)
" EachJVM 12GB VM
= Max 5 cgroups (Not considering other processes)

1 Applications may request more VM

= Failure

26 APML

27

Outline

J Introduction
J Memory related performance pitfalls

] Strategies
_] Discussions

J Conclusion

APMLII

28

Strategies

d Properly sizing memory footprint of apps
J Pre-touching cgroup memory

[Tightly controlling root cgroups
 Limiting VM usage of cgroups

APML

Properly sizing mem footprint of apps

J Cgroup memory limit
= Based on app memory footprint
" Both anonymous memory and page cache

J Anonymous memory footprint

= Relatively easy

1 Page cache footprint
= Not possible on baremetal (non-cgroup env)
= No Linux metrics

* Further complexities (startup, prefetching, logging)

29 APML

Sizing memory footprint on cgroups

J Metrics

= Memory.stat (many metrics of current usage)
= Memory.failcnt

(J Anonymous memory — rss
= Accurate
= Current value is the needed value

(] Page cache — active_file
= Approximate

= Current value may be less than needed (spikes)
30 = Give a buffer APMLC

31

Pre-touching cgroup memory

 Cgroups does not allocate memory

 Java heap

= Xms=Xmx

= _XX:+AlwaysPreTouch
[Protecting the memory
= Swappiness=0

APML

32

Tightly controlling root cgroup

J Root cgroup is unbounded
= Regular cgroup is bounded
" Root cgroup more likely starve other cgroups

. Scenarios
= Sshd, crond, CFEngine, etc.

1 Moving out as many processes as possible

= Special cgroups with memory limit

APML

33

Limiting VM usage of cgroups

. VM is a precious resource
= Just like other types (memory, cpu, etc.)

1 Overcommit disabled
" Enough swap space

" Limiting VM usage of each cgroup

J Overcommit enabled
" Processes in cgroups can request infinite VM

= When RSS reaching memory limit
* OOM: swappiness =0
* Swapping: swappiness >0

APML

34

Discussions

] Design rational of cgroups vs virtual machine

J Taming the resource usage of system processes
] Extreme scenarios are worth to consider

J Monitoring, alerting, enforcing, debugging

APML

35

Conclusion

1 Cgroups based deployments are getting popular
= Cgroups, Linux containers, Docker, CoreOS

[Performance pitfalls exist in certain scenarios

= Focusing on memory resource

J Various types of memory-pressure problems

= Anonymous memory, page cache, virtual memory

] Strategies to mitigate these problems

APM

36

Q/A

] Thanks!
 LinkedIn: https://www.linkedin.com/in/zhenyun

J Email: zhenyun@gmail.com

APML

