

APN

容器里面乾坤大:采用容器部署应用的 性能考虑

Memory-related Performance Pitfalls and Solutions for Linux Cgroup's based Deployments

庄振运

Outline

Introduction

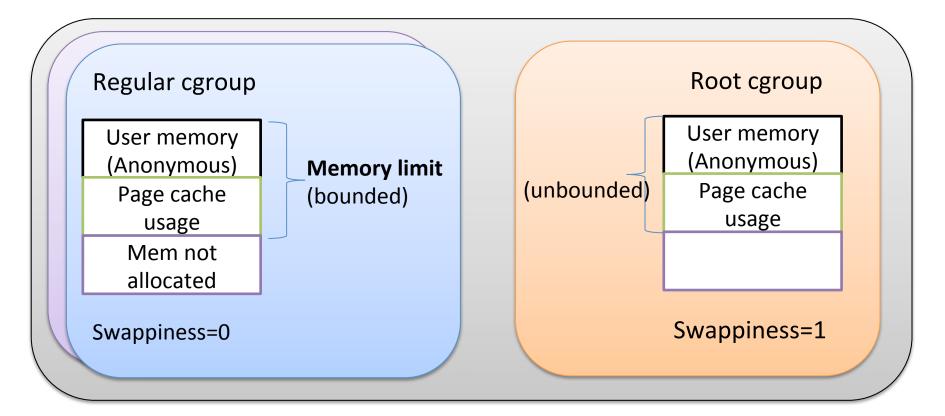
- Memory related performance pitfalls
- Strategies
- Discussions
- Conclusion

Self Introduction

- LinkedIn or Microsoft?
 - N/A
- Performance engineering
 - Applications (HTTP, P2P, Hadoop, streaming, etc.)
 - Java (JVM, GC, etc.)
 - VM/Container(cgroups, etc.)
 - Linux (Memory management, file system, cpu scheduling, etc.)
 - Networking (Wireless/mobile, TCP/IP, etc.)
 - Storage (HDD, SSD, etc.)
- Other interest
 - Chinese culture (History, Poems, etc.)

Problem context

Container


- Linux cgroups, Docker, CoreOS
- New challenges in APM
 - Performance metrics monitoring
 - Deployment concerns
 - Debugging/alerting
- □ Knowledge sharing, discussions
 - Cgroups, performance, memory

🖵 Blog

https://engineering.linkedin.com/blog/2016/08/don_t-letlinux-control-groups-uncontrolled

Technical backgrounds (Cgroups)

Overcommit_memory policy

Swap space

Outline

Introduction

Memory related performance pitfalls

Gamma Strategies

Discussions

Conclusion

Memory related performance pitfalls

- Memory is not allocated
- Page cache is part of memory limit, can be evicted by anonymous memory request
- □OS can reclaim system-wide page cache
- □OS can swap system-wide anonymous memory
- □Virtual memory space is not limited

Experiment setup

Hardware

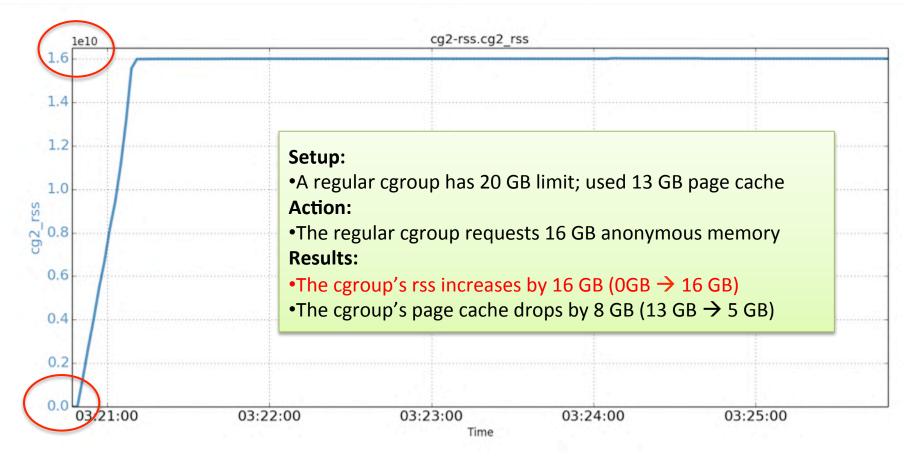
- Intel Xeon E5-2680, dual sockets (12 physical cores)
- 64 GB RAM (NUMA setup)

OS OS

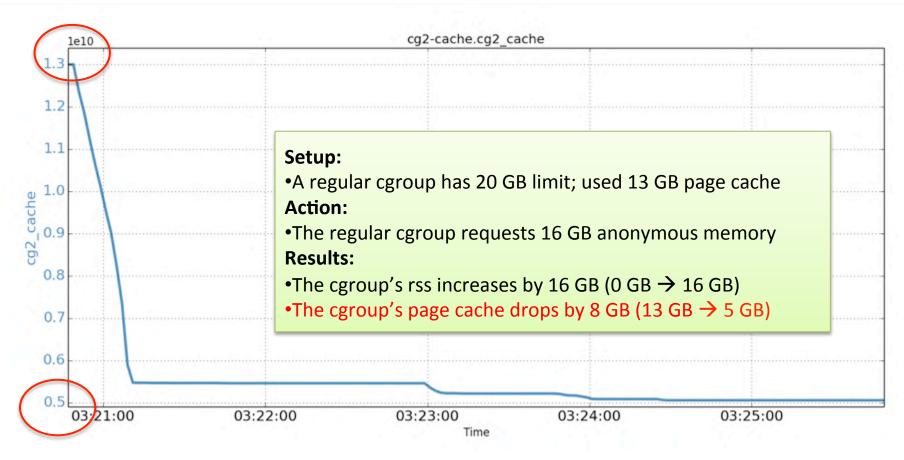
- RHEL (RedHat Linux Enterprise) 7, 3.10.0-327.10.1
- 16GB swap, swappiness=1 for root, 0 for regular cgroups
- Workload
 - Java application
- Other performance metrics
 - Cgroup stat (swap, rss, page cache), "free"

Pitfall 1: Memory is not allocated (as with VM)

- Memory limit of a cgroup
 - Only upper bound
 - "Use as you go" model
- □ Memory request from cgroups
 - Free memory
 - OS reclaiming (page cache or swapping)
- Performance when write-backing dirty caches
 - Taking 20 seconds to obtain 16GB of memory
 - Varies depending on the dirty cache size and IO capacity


Pitfall 2: Page cache is part of memory limit

Memory limit of a cgroup


- Anonymous memory (user space)
- Page cache used (Kernel space)
- Need to estimate footprints of both types
- Anonymous memory requests evicting page cache
 - Insufficient page cache causes under-performing application
 - Write-back IO may affect other cgroups

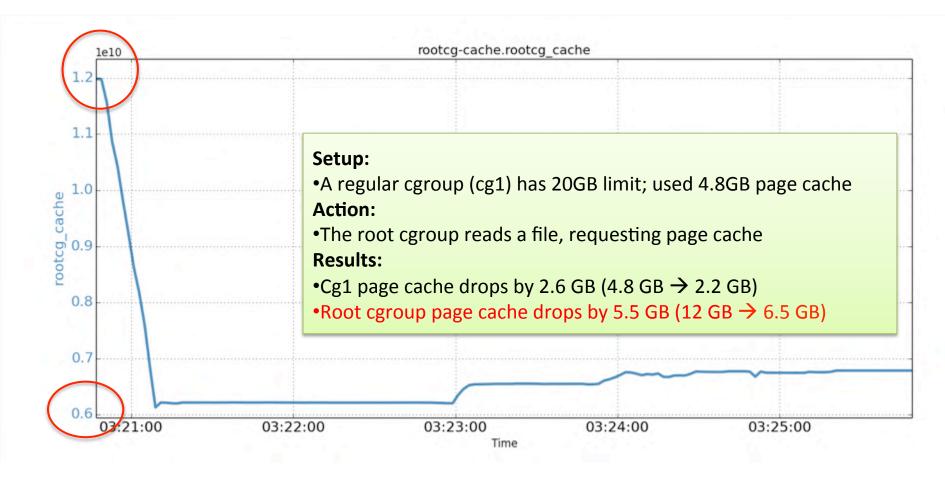
Pitfall 2: Page cache is part of memory limit Experiment results (cgroup's rss)

Pitfall 2: Page cache is part of memory limit Experiment results (cgroup's page cache)

Pitfall 3: OS can reclaim systemwide page cache

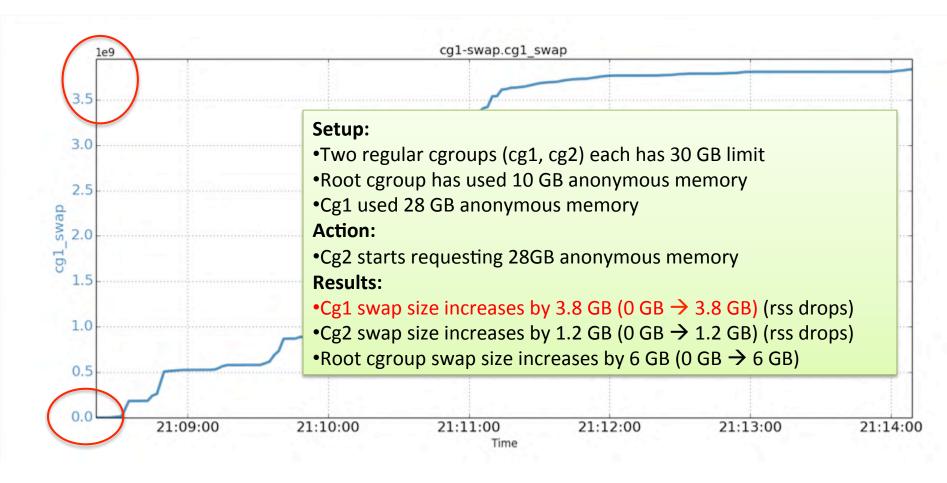
Page cache used charged to cgroups

- Anonymous memory + page cache < memory limit
- OS maintains the entire page cache
 - Kernel space
 - Replacement algorithm applies to all pages
 - Does not respect the owners



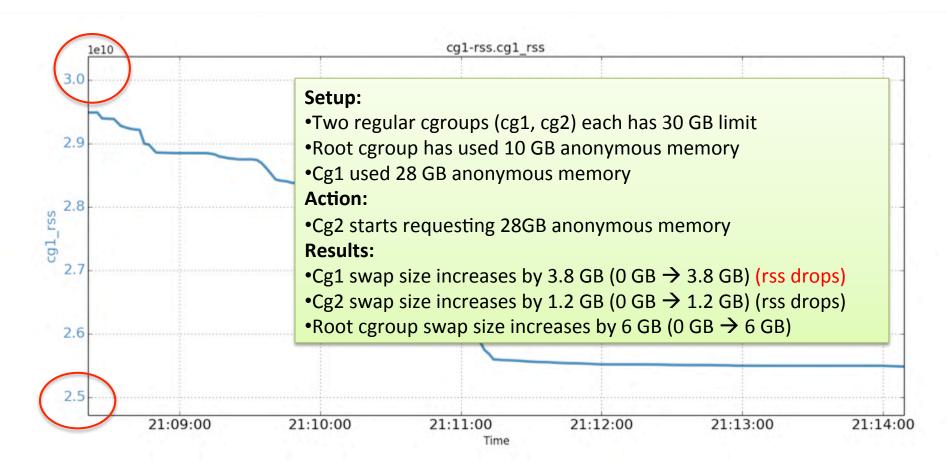
Pitfall 3: Experiment results (regular cgroup's page cache)

Pitfall 3: Experiment results (root cgroup's page cache)

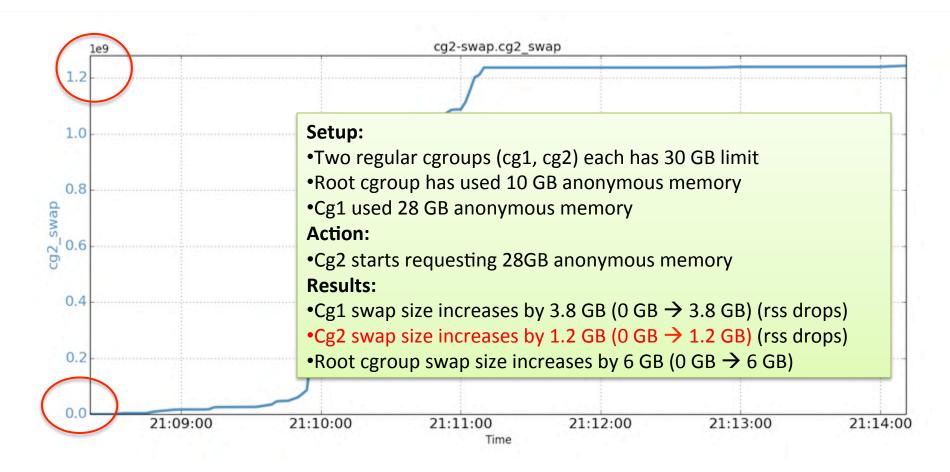

Pitfall 4: OS can swap system-wide anonymous memory

Anonymous memory usage of a cgroup

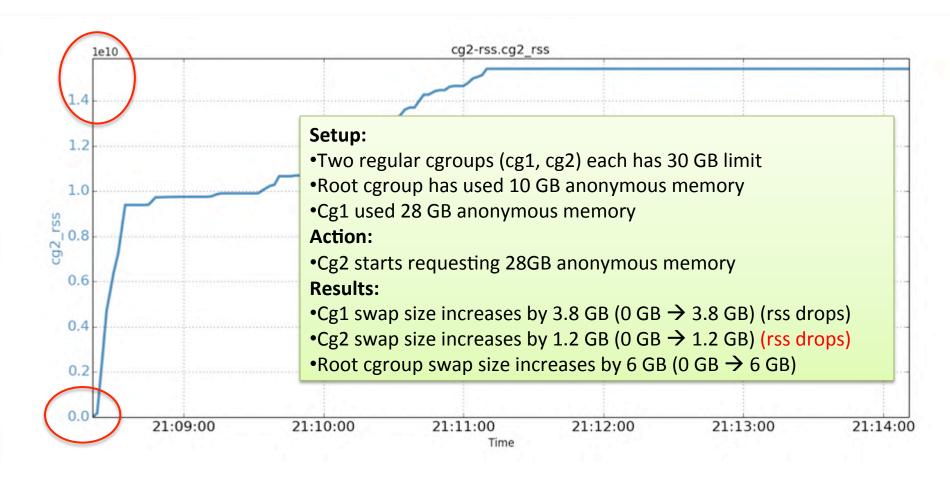
- Anonymous memory + page cache < memory limit
- Swappiness=0 can protect memory from inside requests
- □ OS controls the swapping mechanism
 - All cgroups share the same swap space
 - OS can swap any anonymous memory pages
 - Does not respect the owners



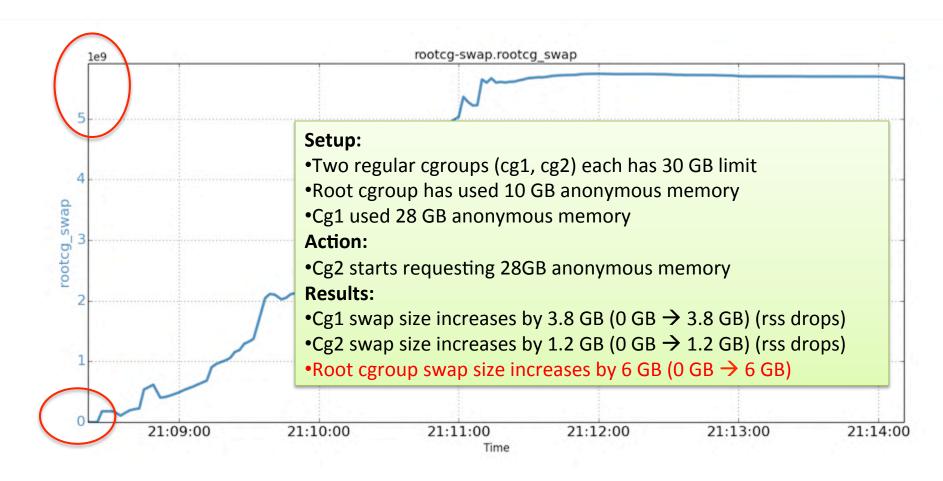
Pitfall 4: Experiment results (Cg1's swap)



Pitfall 4: Experiment results (Cg1's rss)



Pitfall 4: Experiment results (Cg2's swap)


APMCon

Pitfall 4: Experiment results (Cg2's rss)

APMCon

Pitfall 4: Experiment results (root cgroup's swap)

APMCon

Pitfall 5: Virtual memory is not isolated (RSS vs. Virtual Memory)

RSS: Resident set size

□ VM: Process memory map (mmap, library, etc.)

top - 13:06:46 up 5 days, 22:41, 18 users, load average: 0.77, 1.02, 0.65
Tasks: 386 total, 2 running, 382 sleeping, 0 stopped, 2 zombie
Cpu(s): 19.3%us, 0.2%sy, 0.0%ni, 80.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 65893764k total, 23425308k used, 42468456k free, 892084k buffers
Swap: 67106812k total, 0k used, 67106812k free, 4369792k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	SMEM	TIME+	COMMAND
										0:52.33	
A CANADA AND A CANADA	zzhuang					and the second sec				951:12.35	
and the second second second	1				-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				54:05.08	
25841	zzhuang	20	0	35312	2664	1760	R	0.7	0.0	0:01.55	top
446	zzhuang	20	0	485m	39m	17m	S	0.3	0.1	0:22.64	/usr/bin/termin
3854	root	20	0	35348	4648	1700	S	0.3	0.0	22:32.04	cf-serverd
5707	zzhuang	20	0	161m	4100	2780	S	0.3	0.0	0:58.76	ibus-daemon
5715	zzhuang	20	0	375m	29m	16m	S	0.3	0.0	1:12.44	python

Pitfall 5: Virtual memory is not limited

VM space is limited with disabled overcommit

- (Swap space size + RAM * overcommit_ratio)
- E.g., RAM=64GB, swap=32GB, ratio=50%. VM=64GB
- □ VM limit is system-wide
 - All processes aggregated
 - Cgroups do not limit VM
- Impact
 - Applications may fail to start or suddenly fails

Pitfall 5: Virtual memory is not limited (Virtual memory of JVM applications)

- JVM heap
 - Xms=1GB, Xmx=5GB
- RSS
 - Heap + off-heap (perm, meta, direct) (4GB, 8GB)
- □ Virtual memory
 - JVM RSS + glibc memory pool
 - Glibc VM: threads*64MB; threads capped by cores*8

Pitfall 5: Virtual memory is not limited

(Virtual memory tests)

JDK-1_8_0_49/java

- Xms=Xmx=5G, Xss=1M
- Glibc: 12 cores, max is 6144MB

# app threads	JVM native (MB)	# of JVM threads	Glibc mem pool VM (MB) (min of JVM TH*64, 6144)	Sum of JVM native and glibc mem pool (MB)	Actual VM size (MB, pidstat)
1	6802	24	1536	8338	8396
5	6806	28	1792	8598	8662
20	6822	43	2752	9574	9660
50	6852	73	4672	11524	11637
100	6904	123	6144	13048	13282

Pitfall 5: Virtual memory is not limited Overcommit setting

- Overcommit disabled
 - Vm.overcommit_memory=2
 - VM size limited by swap size and overcommit ratio
- □ JVM applications in cgroups
 - 64GB total VM (RAM=64GB, swap=32GB, ratio=50)
 - Each JVM 12GB VM
 - Max 5 cgroups (Not considering other processes)
- □ Applications may request more VM
 - Failure

Outline

- Introduction
- Memory related performance pitfalls
- □ Strategies
- Discussions
- Conclusion

Strategies

- Properly sizing memory footprint of apps
- Pre-touching cgroup memory
- □ Tightly controlling root cgroups
- Limiting VM usage of cgroups

Properly sizing mem footprint of apps

- Cgroup memory limit
 - Based on app memory footprint
 - Both anonymous memory and page cache
- Anonymous memory footprint
 - Relatively easy
- Page cache footprint
 - Not possible on baremetal (non-cgroup env)
 - No Linux metrics
 - Further complexities (startup, prefetching, logging)

Sizing memory footprint on cgroups

Metrics

- Memory.stat (many metrics of current usage)
- Memory.failcnt
- Anonymous memory **rss**
 - Accurate
 - Current value is the needed value
- Page cache active_file
 - Approximate
 - Current value may be less than needed (spikes)
- 30 Give a buffer

Pre-touching cgroup memory

- □ Cgroups does not allocate memory
- 🗖 Java heap
 - Xms=Xmx
 - -XX:+AlwaysPreTouch
- Protecting the memory
 - Swappiness=0

Tightly controlling root cgroup

- Root cgroup is unbounded
 - Regular cgroup is bounded
 - Root cgroup more likely starve other cgroups
- Scenarios
 - Sshd, crond, CFEngine, etc.
- Moving out as many processes as possible
 - Special cgroups with memory limit

Limiting VM usage of cgroups

- □ VM is a precious resource
 - Just like other types (memory, cpu, etc.)
- Overcommit disabled
 - Enough swap space
 - Limiting VM usage of each cgroup
- Overcommit enabled
 - Processes in cgroups can request *infinite* VM
 - When RSS reaching memory limit
 - OOM: swappiness = 0
 - Swapping: swappiness > 0

Discussions

- Design rational of cgroups vs virtual machine
- □ Taming the resource usage of system processes
- **D** Extreme scenarios are worth to consider
- □ Monitoring, alerting, enforcing, debugging

Conclusion

Cgroups based deployments are getting popular

- Cgroups, Linux containers, Docker, CoreOS
- Performance pitfalls exist in certain scenarios
 - Focusing on memory resource
- □ Various types of memory-pressure problems
 - Anonymous memory, page cache, virtual memory
- □ Strategies to mitigate these problems

- □ Thanks!
- LinkedIn: https://www.linkedin.com/in/zhenyun
- Email: zhenyun@gmail.com

